Controversies and Trends in Pediatric Cochlear Implantation

Dennis J. Kitsko, DO, FAOCO, FACS
Assistant Professor of Otolaryngology
Children’s Hospital of Pittsburgh
University of Pittsburgh School of Medicine
Disclaimer

- I have no financial interest or partnership with any company that manufactures cochlear implants
- I use Cochlear Corporation and Advanced Bionics devices
 - No good evidence exists that one implant is superior to another
Overview

- Recurrent otitis / otitis media with effusion
- Anatomic abnormalities
- Unilateral vs bilateral
- Age at implantation (< 12 months)
- Implanting better or poorer hearing ear
- Drilling a well vs no well
- Location of cochleostomy
Acute Otitis Media and CI

- Acute otitis media is obviously common in children, but CI should not be delayed
 - Long term speech and language developmental delays

- Some evidence that the cortical mastoidectomy performed at implantation decreases incidence of AOM (Luntz 2004)
 - 34 AOM prone children, no complications
 - 4 yr follow up
Acute Otitis Media and CI

- When AOM occurs post-implant, it must be treated aggressively
- Of utmost importance to pack cochleostomy tightly in these children to decrease risk of meningitis (Nadol 2004)
- Vaccination is critical (Hib, Prevnar < 2 y/o, Prevnar / Pneumovax 2-5 y/o, Pneumovax > 5 y/o)
Chronic Otitis Media with Effusion

- More controversial than AOM – no good evidence which approach is superior

- Options / Preferences (Kennedy 2005):
 - Ignore OME and proceed with CI (22%)
 - Place vent tube and perform CI at 2nd operation (53%)
 - Vent tube and CI at one operation (6%)
 - CI with “extra maneuvers” – i.e. antibiotic irrigation/gelfoam (12%)
 - Avoid CI altogether (6%)
Chronic Otitis Media with Effusion

- **What if a vent tube is in place already?**
 - Proceed with CI with tube in place (38%)
 - Remove tube, let drum heal, CI at 2nd surgery (43%)
 - Remove tube at CI and patch drum (18%)

 Kennedy 2005

- **Must weigh risk of noninfected effusion vs creating “nonsterile” middle ear with vent tube by exposure to external environment**

- **Role of adenoidectomy?**
 - Known to improve OME in older children (>3-4 y/o), but not in younger children (Casselbrant 2009)
 - May delay CI surgery
Inner Ear Malformations

- It is generally accepted that some congenital inner ear malformations are NOT contraindications for CI
 - Mondini deformity
 - Enlarged vestibular aqueduct
 - SCC hypoplasia / aplasia
 - Cochlear hypoplasia
Inner Ear Malformations

- Medical / Surgical considerations:
 - Higher risk of CSF leaks (21%)
 - Aberrant facial nerve (32%)
 - May have incomplete insertion
 - Consider straight array in common cavity / severe Mondini as neural tissue likely lies on the walls of the cavity
 - Higher risk of electrode insertion into IAC (consider intraop skull film)
 - Slower to develop speech perception, but typically achieve mean performance levels

Buchman 2004, Graham 2000
IAC Insertion
Preop Evaluation: CT or MRI?

- **CT traditionally study of choice:**
 - Better definition of bony anatomy
 - Superior to MRI in identifying vestibulocochlear / modiolar abnormalities (Parry 2005, Trimble 2007)
 - Less need for sedation
 - Lower cost
 - Most ENT more comfortable with CT, particularly with surgical anatomy
 - Marrowed mastoid bone
 - Facial recess pneumatization
 - Course of facial nerve
 - Tegmen

Woolley 1997, Trimble 2007
Preop Evaluation: CT or MRI?

- **Limitations of CT**
 - Cannot identify cochlear n. aplasia
 - Narrow IAC does not correlate 100% (Trimble 2007) – 8/92 patients had narrow IAC on CT, all were shown to have cochlear nerves on MRI
 - Reverse is also true – absence / attenuation of the cochlear nerve has been shown in normal caliber IAC’s
 - Radiation exposure
Preop Evaluation: CT or MRI?

- **Advantages of MRI:**
 - Assess caliber of cochlear nerve
 - Argument can be made that most relevant surgical anatomy can be obtained from MRI (obviating need for second study in most cases)
 - “Abnormalities on MRI are more likely to influence the implant process” (Parry 2005)
Narrow IAC

- Historically considered an absolute contraindication to CI (absent or attenuated cochlear n.) when seen on CT

- MRI (FIESTA imaging) can reveal an intact nerve even in the presence of a narrow IAC
 - These patients can be considered implant candidates
 - Kim 2006 – 6/6 patients showed increased awareness / discrimination of environmental sounds and pure tone thresholds at 30 dB or better
 - Only 2/6 achieved open set word recognition
Narrow IAC

- **Other considerations – functional hearing**
 - Presence of functional hearing prior to implantation may improve outcomes
 - 2/2 children with PTA < 100 achieved open set word recognition (Kim 2006)
 - Question moving forward:
 - Who has a better prognosis:
 - Better functional hearing with absent/attenuated nerve
 - Worse functional hearing with intact cochlear nerve
Labyrinthitis Ossificans

- Critical to identify post-meningitic profound deafness early
 - Ossificans can begin as early as 12 days (Philippon 2009)
 - Implant early and bilaterally - LO associated with worse hearing result post implant

- MRI superior in assessing cochlear obstruction
 - CT only 50% sensitive (Young 2000)
 - MRI 94% sensitive (Isaacson 2009)
 - Can identify early fibrous ossificans
 - Will help in preoperative planning
Case - JR

- 4 y/o male - 6 weeks s/p pneumococcal meningitis from an AOM
- Bilateral profound sensorineural hearing loss
- CT shows normal cochlea
Case - JR

- MRI reveals decreased signal intensity in the right cochlea, early ossificans
- Bilateral implantation is planned for 1 week later
- MRI information allows preoperative planning:
 - Address left ear first – “easier” ear
 - Be prepared for right ear – possible failed insertion and discussion with parents
 - Be prepared for possible scala vestibuli insertion
 - Have straight array available and plan on no “advance off stylet” technique if usual electrode can be placed
 - Have split electrode available if drillout is necessary (Bredberg 1997)
Case - JR
Which Ear to Implant?

- Long standing and continuing argument about whether to implant better or worse hearing ear
- Favorable vs unfavorable anatomy also considered
- Traditionally, the better hearing ear was chosen:
 - Pathophysiologically based on correlation between level of residual hearing and spiral ganglion cell counts (Incesulu 1998)
Which Ear to Implant?

- Preoperative residual hearing is associated with superior speech perception (Rubinstein 1999, Cowan 1997) BUT:
 - This may have a central auditory pathway origin and not be related to the implant ear (Francis 2004)

- Chen 2001
 - 38 matched patients with B/L profound SNHL
 - 19 had better hearing ear implanted, 19 had worse hearing ear implanted
 - No difference in open set word or sentence recognition
Which Ear to Implant?

- **Francis 2004**
 - 3 groups: B/L severe, B/L profound, severe/profound (one ear each)
 - Worse hearing ear implanted
 - No difference in speech perception b/t B/L severe and severe/profound groups
 - 3 severe/profound patients chose to have the better hearing ear implanted – these were matched against 3 who had the worse hearing ear implanted
 » No difference in open set word rec
 - B/L profound SNHL did worse overall, but no difference b/t better/worse ear
 - Suggests that preoperative residual hearing is an important predictor of success, but NOT related to which ear is implanted
Which Ear to Implant?

- Implanting the worse hearing ear may allow for continued use of a hearing aid in the other ear
 - Acoustic stimulation + implant broadens auditory inputs to the brain, allowing improved hearing (Ching 2004, Gifford 2007)
 - But it may be difficult or impossible for some patients to fuse the electrical (CI) and acoustic (aid) signals centrally (Tyler 2002)
Children’s Hospital of Pittsburgh

- Implant the worse hearing ear, particularly if the patient is having success with a hearing aid on the contralateral ear
 - Good results with adaptation to electrical + acoustic stimulation may be due to plasticity of children
- In bilateral symmetric profound SNHL, particularly in infants, strongly consider bilateral implantation
 - If unilateral, consider ideal anatomic ear
 - If anatomy is not a concern, implant right ear
 - Left is dominant hemisphere for speech processing in 98% of right handed individuals and most left handers as well
 - No strong data supports improved outcomes by implanting one side over the other in symmetric profound ears
Age at Implantation

- 1990 – FDA approves CI in children > 2 y/o
- 1998 – FDA drops age to 18 months
- 2002 – FDA drops age to 12 months
- Traditionally, most implants performed less than age 12 months in the US have been in post-meningitic patients
< 12 Months: The Future?

- Earlier age being considered because:
 - Universal newborn hearing screen diagnosing most children prior to 3 months of age
 - Hearing aid data suggests optimal timing for amplification is 6 months, so why not CI if there is no benefit with aids?
 - Technically feasible as cochlea reaches adult size by birth
< 12 Months: The Future?

- **Challenges:**
 - Thinner skin flap / subcutaneous tissue
 - Smaller blood volume (80 ml/kg in children <12 mos)
 - Hypovolemic shock can occur with 10% total blood volume loss
 - Underdeveloped mastoid tip (higher risk to CN VII)
 - ?Role of skull growth related to implant migration
 - Consider well + fixation sutures
 - Roland 2009 – 50 implants < 12 months, no migration seen (mean f/u 6.8 yrs)
< 12 months: The Future?

- Roland 2009 – 50 patients, 6.8 yr mean f/u
 - No anesthesia complications
 - Total of 8 complications:
 - 3 major:
 - CSF leak
 - Implant failure (9 months post op)
 - Infection / exposed implant (10 months post op)
 - 5 minor:
 - Hematoma, skin flap erythema, cellulitis
 - Conclusion: Safe and efficacious in children <12 months
< 12 months: The Future?

- **Colletti 2005**
 - 10 children
 - Increased CAP scores compared to infants implanted after 1 y/o
 - No difference until 6 months after implant
 - Approached normal for age by 12 months post implant
 - No complications
 - Conclusion: Encouraging preliminary results that implantation < 12 months has significant auditory/speech benefit compared to those > 12 months
Colletti 2009
- 4-9 year follow up to previous study
- Compared with those implanted 12-23 mos and 24-36 mos
- Children implanted early reached normal CAP more quickly and performed better on other receptive/speech tests
- No early implants in schools for the deaf
 - 30% implanted 12-23 mos
 - 60% implanted 24-36 mos
<12 months: The Future?

- Vlastarakos 2010
 - Meta-analysis
 - Compared 10 patients who had open/closed set testing with 10 controls implanted b/t 12-23 mos
 - Only 4 had better outcomes
 - Conclusion: Possible benefit but data is too limited, short term and subjective to draw a firm conclusion
Well – To Drill or not to Drill?

- **Potential advantages:**
 - Prevents implant migration
 - Reduces device profile

- **Infant considerations:**
 - Thin skull often requires drilling to dura
Well – To Drill or not to Drill?

- **Potential complications:**
 - CSF leak
 - Subdural hematoma
 - Epidural hematoma
 - Lateral sinus thrombosis

- **Balkany 2009**
 - 227 implants
 - 56 with well, 171 without well
 - No cases of migration (minimum follow up 12 months)
The CHP Experience

- Small periosteal pocket
- Fixation sutures VS small well / ledge
 - Lower profile Cochlear Corp device design
 - No cases of migration
 - One case of screw extrusion into subQ tissue that required repeat surgery
Well – To Drill or not to Drill?

- Secondary advantages of no well:
 - Smaller incision
 - Shorter operative time
Location of Cochleostomy

- Scala tympani (2) insertion is ideal
 - Associated with better speech outcome compared to scala vestibuli insertion (Aschendorff 2007)
 - Less traumatic
 - Decreased vestibular symptoms (Todt 2008)
Unilateral vs Bilateral Implantation

- Advantages of binaural hearing:
 - Hearing in Noise:
 - Binaural summation effect
 - Binaural squelch effect
 - Head shadow effect
 - Sound localization
 - Head shadow effect
Binaural Summation Effect

- **Redundancy:**
 - The auditory system can combine information derived from 2 ears versus monaural

- **Improved hearing thresholds:**
 - Increased perceptual loudness
 - 3 dB difference between binaural and monaural
 - Improves speech intelligibility in noise
 - 21% benefit binaural vs monaural

Schleich 2004, Murphy 2007
Squelch Effect

- Auditory cortex is able to use differences in signal to noise ratio between the 2 ears and identify what’s not wanted and suppress it
 - i.e. how loud the voice you’re listening to is compared to all other noise
- Improves speech perception in noise
- 3 dB difference between binaural and monaural
- Does not develop until 1 year after implantation and continues to improve for at least 4 years
 - Eapen 2009 – 9 patients with simultaneous bilateral implants
Head Shadow Effect

- Improves signal to noise ratio:
 - Acts as a baffle to shadow competing noise from signal
 - Can attenuate high frequencies up to 20 dB and low frequencies 4-7 dB
 - Immediate improvement after bilateral CI and continues to improve to at least 12 months (Nava 2009)
 - Also demonstrated with second side CI (Galvin 2007)
Sound Localization

- Head shadow effect also contributes in localizing sound
 - Interaural difference

- Safety issue:
 - Crossing roads
 - Bicycles
 - Particularly important in children – more prone to dangerous behaviors
Other Benefits of Bilateral Implants

- Ensures that the ear with the best postoperative performance is implanted
- If different speech cues are encoded by the two ears, they act in a complimentary way to improve performance
- Back up device (dead battery, hardware malfunction)
Concerns with Bilateral Implantation

- Precludes usage of future, “better” technology for hearing amplification
 - Hair cell regeneration
 - Stem cells
 - Drug delivery systems
 - Better implant device

- Longer procedure, ?increased meningitis risk
Concerns with Bilateral Implantation

- **Potential risk of vestibulopathy**
 - Clinical and vestibular findings often do not correlate, particularly in children (Basura 2009)
 - Make patient aware of potential risk
 - Scala tympani insertion important (Todt 2008)

- **Cost**
 - $25,000-$50,000
 - Favorable cost-utility and cost-differential when quality of life measures are included
Auditory Plasticity – Critical Time?

- **Sharma 2002, 2005**
 - Measured cortical auditory evoked potentials in implanted children compared with normal controls
 - EEG activity in response to sound stimulation
 - P1 wave latency tracks maturation of auditory thalamic and cortical sources
 - Latencies improved (decreased) after implantation
Auditory Plasticity – Critical Time?

- Key time appears to be 3.5 years

- Children implanted after 7 years of age never achieve normal P1 latency
 - Poorer speech and language outcomes
Hybrid Implant

- FDA approved 2014 ages 18+
- Thinner, smaller electrode designed to maintain low frequency acoustic hearing
- Combines acoustic and electrical amplification/stimulation
Single Sided Deafness

- **Potential advantages**
 - Improved sound localization, quality of life and reduced tinnitus

- **Questions:**
 - Cost! – especially vs expected benefit
 - Length of duration of profound HL
 - Auditory plasticity limitation
 - Benefit vs other options (i.e. BAHA, CROS)
 - Congenital hearing loss
 - Insurance coverage
Conclusions

- Cochlear implants remain the treatment of choice for children with severe to profound SNHL
- Ideal surgical approach in OME still not defined
- Anatomic malformations, particularly narrow IAC, becoming less of a contraindication to CI
- Lower profile implant devices obviating need to drill a well, even in infants
- Scala tympani insertion improves outcomes
- Trend away from always implanting better hearing ear
- Changing indications: many centers routinely implanting at less than 12 months of age
- Bilateral implants are the binaural option in bilateral severe to profound SNHL
Special thanks to David Chi, MD for his mentorship in research and clinical practice and contribution to this presentation.
Children’s Hospital of Pittsburgh Hearing Center

- David Chi, MD – Director
- Dennis Kitsko, DO - dennis.kitsko@chp.edu
- Jen Hanselman, CRNP
 - 412-692-7206