Ergonomics of Microlaryngeal Surgery

Libby J. Smith, DO
University of Pittsburgh Voice Center

99th Annual Clinical Assembly of the AOCOO-HNS Foundation
OTOLARYNGOLOGISTS REPORT:

- **83%** have musculoskeletal symptoms after MSL
 - Neck, upper back, shoulders, lower back

- **53%** have musculoskeletal symptoms for **48 hours** AFTER MSL
 - Neck, shoulders

Introduction

• MSL is inherently “risky”
 – NIOSH
 – Static, fixed work postures
 – Limb extended

• Goal: think about YOUR posture

Bernard BP, National Institute for Occupational Safety and Health, publication no 97-141; 1997
Ergonomic analysis of microlaryngoscopy
Laryngoscope 120:297-305, 2010

- Consensus “most favorable” position for 3 laryngologists

<table>
<thead>
<tr>
<th>Surgeon</th>
<th>OR bed Trendelenburg angle (degrees)</th>
<th>Laryngoscope angle (degrees)</th>
<th>Head of the bed angle (degrees)</th>
<th>Laryngoscope height (cm)</th>
<th>Laryngoscope to surgeon iliac crest (cm)</th>
<th>Microscope focal length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-12</td>
<td>39</td>
<td>26</td>
<td>93</td>
<td>59</td>
<td>367</td>
</tr>
<tr>
<td>2</td>
<td>-11</td>
<td>39</td>
<td>19</td>
<td>90</td>
<td>54</td>
<td>387</td>
</tr>
<tr>
<td>3</td>
<td>-7</td>
<td>46</td>
<td>22</td>
<td>89</td>
<td>60</td>
<td>388</td>
</tr>
</tbody>
</table>
Surgeon positioning

• Most “comfortable”

• Compared to other “common” positions for microlaryngoscopy
 – Mayo stand support
 – No arm support
RULA

rapid upper limb assessment → risk of MS misuse

<table>
<thead>
<tr>
<th>RULA Score</th>
<th>Workplace recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 2</td>
<td>Working under the optimal ergonomic posture with NO risk</td>
</tr>
<tr>
<td>3 – 4</td>
<td>A potential risk of injury from the posture, which should be investigated further and corrected if possible</td>
</tr>
<tr>
<td>5 – 6</td>
<td>Poor posture with increased risk, thus necessitating changes in the near future</td>
</tr>
<tr>
<td>7 – 8</td>
<td>A posture threatening immediate risk, thus requiring investigation and changes immediately to the posture to prevent injury</td>
</tr>
</tbody>
</table>
Simulated Microlarngoscopy

Simulated Microlaryngoscopy

Articulated arm support Mayo stand arm support No arm support

Simulated Microlaryngoscopy
Standardized OR Conditions

- Articulated arm support
- Mayo stand arm support
- No arm support

- Form-fitting spandex
- 27 reflective markers → bony landmarks
Motion Capture Analysis
High risk v. Low risk

- Mayo/no arm support
- Articulated arm support

<table>
<thead>
<tr>
<th>RULA Score</th>
<th>Workplace recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 2</td>
<td>Working under the optimal ergonomic posture with NO risk</td>
</tr>
<tr>
<td>3 – 4</td>
<td>A potential risk of injury from the posture, which should be investigated further and corrected if possible</td>
</tr>
<tr>
<td>5 – 6</td>
<td>Poor posture with increased risk, thus necessitating changes in the near future</td>
</tr>
<tr>
<td>7 – 8</td>
<td>A posture threatening immediate risk, thus requiring investigation and changes immediately to the posture to prevent injury</td>
</tr>
</tbody>
</table>
Neck Flexion

- NIOSH – National Institute of Occupational Safety & Health
 - No normative data
 - Recommend no prolonged flexion > 15-20°

- Articulated Arm Supports
 - Flexion 0-10°

- Mayo Stand
 - Flexion >20°
 - At least 2x neck extensor contractile forces
 - Concern for strain and injury

Maximal Force Exerted

Prolonged Posture

Muscle Strain
“Favorable” Ergonomics of MSL

• Conclusions¹
 – Neck flexion 0-10°
 – Laryngoscope ~40 °
 – Shoulders neutral
 – Foot support
 – Arm support (articulated)

 • 38% do NOT use arm support²

¹ Statham MM, Sukits AL, Redfern MS, Smith LJ, Sok JC, Rosen CA. Laryngoscope 2010; 120:297-305
So why do 38% surgeons still NOT use arm supports?
Comparison of Microsuspension Laryngoscopy (MSL) Positions: A Randomized, Prospective Study

Laryngoscope. 2015 Mar;125(3):649-54

- Is there a difference in...
 - Risk of musculoskeletal symptoms
 - Pain
 - Muscle activity and fatigue
- “Favorable” v “unfavorable”
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Favorable</th>
<th>Unfavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Angle ($^\circ$)</td>
<td>39.7 (0.5)</td>
<td>59.9 (1.5)</td>
</tr>
<tr>
<td>Neck Angle ($^\circ$)</td>
<td>11.7 (2.2)</td>
<td>29.7 (4.7)</td>
</tr>
<tr>
<td>Arm Rests</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Methods

• 18 otolaryngology trainees (PGY2-7)
• MSL simulator
• Simulated MSL surgical task, 15 min
 – Randomly counterbalanced
 – Rest period, 15 min
• sEMG
• Questionnaires
Results – RULA
rapid upper limb assessment—risk of MS misuse

<table>
<thead>
<tr>
<th>RULA score</th>
<th>Workplace Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Working under the optimal ergonomic posture with no risk</td>
</tr>
<tr>
<td>3-4</td>
<td>A potential risk of injury from the posture, which should be investigated further and corrected if possible</td>
</tr>
<tr>
<td>5-6</td>
<td>Poor posture with increased risk, thus necessitating changes in the near future</td>
</tr>
<tr>
<td>7-8</td>
<td>A posture threatening immediate risk, thus requiring investigation and changes immediately to the posture to prevent injury</td>
</tr>
</tbody>
</table>

- Favorable 3.1 ± 0.3
- Unfavorable 3.8 ± 0.5
- p=0.0002

Simple accommodations (laryngoscope, neck) improve ergo positioning, thus decreasing risk of injury

Results – sEMG

Mean EMG amplitude
- Level of muscle activity
 - ↑ muscle units recruited
 - ↑ myoelectric signal
- Lower trap, cervical trap:
 - most increase in average EMG amplitude in UNFAVORABLE

Muscle fatigue
- Increased EMG amplitude + decreased median frequency of muscle firing
- Favorable: 31% muscles “fatigued”
- Unfavorable: 45% muscles “fatigued”
- Most (% participants): Triceps (67%), upper/cerv trap (56%)
Results – Pain Survey

Average pain score (1=no pain, 10=worst pain possible) for dominant side in favorable (■) and unfavorable (□) positions.
Results - Usability

• “Favorable” easier (p<0.0001)
• “Unfavorable” cumbersome (p=0.0006)
• Less confident in “unfavorable” (p<0.0001)
• More likely to use “favorable” (p<0.0001)

• You can tell the difference
• Just need to think about it, then do it.
Conclusion

- Electromyographic evidence of decreased muscle activation and fatigue; less self-reported pain with more “favorable” MLS ergonomic position

- Quantifiable evidence that improved surgeon ergonomics positively impacts muscle activation and pain associated with MSL
Summary

• Ergonomics are important
• Prospective, randomized study shows...

• Simple modifications → big differences
How to accomplish an ergonomically favorable position

- Laryngoscope ~40°
- Neck 0-10° flexion
- Arm support
- Foot support

- Once laryngoscope in...
- Move pt to come to you
Factors

Fixed
- Microscope focal length
- Patient anatomy
- Static posture

Variable
- Laryngoscope angle
 - Trendelburg
- Bed height
- Chair height
- Eyepieces (articulated)
- Microbreaks
Results - Microbreaks

- $p = 0.0011$
 - Favorable: 0.7 ± 0.8
 - Unfavorable: 3.2 ± 3.0
- Corraborates data from survey
 - >30 min
- Likely subconscious reactions to increased muscle contraction and fatigue
 - Restorative?
Just
Do
It

I won’t make it to the Olympics.
I’ll never make it to the finish line.
It’s impossible.
I can’t get that landing.
I’m not fast enough.
I’ll never go pro.

I’ll never be that good.
I’ll never break a world record.
I’m not strong enough.
I can’t win the gold medal.
I’ll never be able to think.

I can’t make that shot.
That will never happen.