VISUAL EVOKED POTENTIAL PATTERN-ELECTRORETINOGRAHAM
ASSESSMENT OF NEURO-VISUAL FUNCTION

Lee Shettle, D.O.
Lee Shettle Eye & Hearing
Overview of VEP / PERG

- Why should I Use this Test?
- How does it work?
- Clinical Indications of VEP & PERG
- Interpretation
- Case presentations
- Billing & Coding
Electrocardiogram
ASSESSMENT OF NEURO-VISUAL FUNCTION

ELECTROPHYSIOLOGY

- Electrocardiogram
- Electromyography
- Auditory Evoked Potential
- Electroencephalogram
Previous Ocular Electrophysiological Testing Limitations

- Test time was approximately 45 minutes
- Required highly trained operators
- Limited to large research institutions
Ophthalmic Diagnostic Tests

- Psychophysical
- VF
- GDx
- HRT
- OCT
Psychophysics of vision

Visual Acuity Test
Psychophysics of vision

Color Vision Test
Psychophysics of vision

Visual Field Test
ASSESSMENT OF NEURO-VISUAL FUNCTION

Psychophysics of vision

Contrast Sensitivity Test
ASSESSMENT OF NEURO-VISUAL FUNCTION

Current Conditions

- Test time is approximately 1 minute
- Does not require highly trained operators
- Provides valuable Objective Functional data
- Currently installed in about 700 offices
Where are we Testing?

- Low contrast testing demonstrates degradation of Magnocellular pathways
 - An early indication of glaucoma, peripheral disease

- High contrast testing demonstrates degradation of parvocellular pathways
 - An early indicator of central vision loss and issues mostly caused by problems before signal reaches optic nerve, ie central macular disease

patient should be tested with best corrected vision
Why Use VEP?

• Many optic nerve diseases are asymptomatic because central vision is not affected until late in the disease\(^1\)

• Diagnosis and management of optic nerve disorders are often based on structural or subjective visual field tests\(^2\)

\textbf{VEP is an objective, functional test that can help discriminate between healthy and glaucomatous eyes}\(^2\)

\(^1\) Glaucoma. American Optometric Association. \url{www.aoa.org}
After Treatment

Science Made Simple

• **Visual Evoked Potential (VEP)**
 – Visual – patient observes a visual stimulus
 – Evoked – generates electrical energy at the retina
 – Potential – measure the electrical activity in the visual cortex

• **Objectively** measure the function of the entire vision system; no verbal response or “button pushing” required
Phototransduction
Conversion of light into electricity
ANATOMY

ASSESSMENT OF NEURO-VISUAL FUNCTION

Photoreceptor
Bipolar
Ganglion
Ganglion cell axon
Relay neuron
Relay neurons axon
Visual cortex neuron
ASSESSMENT OF NEURO-VISUAL FUNCTION

NEURO-PHYSIOLOGY

Light → Photoreceptor → Bipolar → Ganglion cell axon → Relay neuron → Visual cortex neuron

Phototransduction → Electricity → Electricity → Electricity → Electricity → Electricity

VEP
Main Indications

- Glaucoma
- Multiple Sclerosis
- Ischemic Optic Neuropathy
- Traumatic Brain Injury
- Amblyopia
- Other Neuropathies
ASSESSMENT OF NEURO-VISUAL FUNCTION

ISCEV

International Society for Clinical Electrophysiology of Vision

http://www.iscev.org/
ASSESSMENT OF NEURO-VISUAL FUNCTION

VEP Stimulus

- Diffuse
- Pattern

 Reversal

 Pattern-onset

 Transient

 Steady State
ASSESSMENT OF NEURO-VISUAL FUNCTION

VEP TEST

VEP should be done with refractive correction for 39"

Uncorrected Multifocal Monofocal
VEP Testing Protocols

- **NOVA-LX** Advanced Protocol

 Testing distance of 39 “
 Alternating 32 x 32 HC & LC Checkerboard pattern

- **NOVA-TR** User Defined Protocol

 Testing distance of 39”
 16 x 16, 8 x 8, 4 x 4 HC & LC Check size
 Alternating HC & LC Checkerboard Pattern
VEP Electrode Placement

Reference Ground Active
ASSESSMENT OF NEURO-VISUAL FUNCTION

VEP

Electric signal registered at the occipital region in response to a visual stimulus.

Electrical activity of V1 occipital cortex
ASSESSMENT OF NEURO-VISUAL FUNCTION

VEP Components

- Amplitude usually translates to the number of axons conducting along the visual pathway.
- Latency usually translates to the myelin status of the visual pathway.
VEP LX Interpretation
32 x 32 checkerboard Standard Protocol

- Amplitude - >6 microvolts
- P 100 High Contrast Latency using 85% High contrast stimulus - 95 to 117 ms.
- P 100 Low Contrast Latency using 15% Low contrast stimulus - 95 – 125 ms
- P100 Reliability Index >70% minimum
ASSESSMENT OF NEURO-VISUAL FUNCTION

Diopsys® VEP Report

Diopsys® NOVA-LX
Office Based Neuro Optic Vision Assessment

First Name: [Name]
Last Name: [Name]
DOB: [DOB]
Age: [Age]
Gender: [Gender]
Exam Date: [Date]
Exam Time: [Time]
VA: [VA]

OD: S/C/Ax/Ad:///
OS: S/C/Ax/Ad:///

Amplitude Low Contrast: [Value]
Amplitude High Contrast: [Value]
Latency Low Contrast: [Value]
Latency High Contrast: [Value]

Operator: [Operator]
Signature: [Signature]

www.diopsys.com

Copyright © 2017 Diopsys, Inc. All Rights Reserved. Software Version: 1.7.6.2924
ASSESSMENT OF NEURO-VISUAL FUNCTION

Diopsys® VEP Report

Signal Quality: 129dBµV 60Hz noise
Signal Quality: 133dBµV 60Hz noise
Signal Quality: 160dBµV 60Hz noise
Diopsys® VEP Report

ASSESSMENT OF NEURO-VISUAL FUNCTION
Diopsys® VEP Report

ASSESSMENT OF NEURO-VISUAL FUNCTION

P100 Reliability Index

Lc 92%
Hc 100%
Diopsys® VEP Report

ASSESSMENT OF NEURO-VISUAL FUNCTION

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>OD</th>
<th>OS</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude Low Contrast μV</td>
<td>6.8</td>
<td>6.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Amplitude High Contrast μV</td>
<td>9.5</td>
<td>10.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Latency Low Contrast ms</td>
<td>124.0</td>
<td>117.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Latency High Contrast ms</td>
<td>109.4</td>
<td>104.5</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Remarks

[Graphical representation of results]
Diopsys® VEP Report

ASSESSMENT OF NEURO-VISUAL FUNCTION
VEP - Abnormal

<table>
<thead>
<tr>
<th>Parameters</th>
<th>OD</th>
<th>OS</th>
<th>Difference</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude Low Contrast</td>
<td>7.69</td>
<td>3.40</td>
<td>4.29</td>
<td>μV</td>
</tr>
<tr>
<td>Amplitude High Contrast</td>
<td>13.64</td>
<td>11.55</td>
<td>2.08</td>
<td>μV</td>
</tr>
<tr>
<td>Latency Low Contrast</td>
<td>129.87</td>
<td>128.90</td>
<td>0.98</td>
<td>ms</td>
</tr>
<tr>
<td>Latency High Contrast</td>
<td>108.39</td>
<td>118.16</td>
<td>9.77</td>
<td>ms</td>
</tr>
</tbody>
</table>

Remarks:
- N/A
- Both Delayed
- Delayed
VEP - Abnormal
VEP abnormal - Asymmetry