IS THERE A PLACE FOR OCT IN AMBLYOPIA?

Naomie Warner DO
Michigan State University – Hillsdale Campus
Mid-Year Meeting September 2013
WHAT WE KNOW

► DEVELOPMENT OF THE EYE:

► AT 16-17 WEEKS OPTIC NERVE HAS APPROX 3.7 MILLION AXONS
 ► DEGENERATE TO APPROX 1.1 MILLION IN ADULTHOOD

► AT 18-30 WEEKS RETINA HAS 2-2.5 MILLION GANGLION CELLS
 ► DEGENERATE TO APPROX 1.5-1.7 AT 40 WEEKS

WHAT WE KNOW

- Amblyopia effects various areas of visual system

- 1950–1960’s: Rausch and Chow:
 - Animal models demonstrated
 - Interplexiform layer thinning
 - Nucleolar volume diminution in ganglion cells
 - Mammals reared in darkness vs light

WHAT WE KNOW

- 1970’s - Von Noorden and others showed histopathologic changes in lateral geniculate nucleus (LGN) in *Macaca mulatta* with unilateral lid sutured closed
 - Arrest in the LGN development (worse in the LGN that received crossed fibers)
 - Decrease in size/density of parafoveal retinal ganglion cells

Remember:
- Ipsilateral eye sends information to 2, 3, and 5
- Contralateral eye sends information to 1, 4, and 6

WHAT WE KNOW

- Wiesel and Hubel: micro-electrode recordings of single neurons in visual system (specifically striate cortex)
 - Extracellular recordings from striate neurons
 - Kittens with unilateral lid closure – decimation of cells receiving input from amblyopic eye

- Human PET scans (Deemer, 1998)
 - Reduction in cortical blood flow and glucose metabolism during visual stimulation of amblyopic eye vs. normal eye

FINDINGS IN THE EYE?

- ERG with patterned stimuli in humans
 - Various types of amblyopic patients tested
 - All had significant reduction

- Visual appearance is unaltered in the amblyopic eye

OCT

Interferometry using near-infrared light. Long wavelength can obtain deeper tissue images.

Current uses of OCT:

- **Anterior segment:**
 - Cornea
 - Angle structure
 - Iris abnormalities

- **Posterior segment:**
 - Macular edema
 - Drusen
 - ERM/VMT
 - Optic nerve elevation
 - RNFL dropout
 - Specific retinal layer findings in macular area.
REVIEW OF CURRENT LITERATURE

<table>
<thead>
<tr>
<th>Change in Thickness</th>
<th>No Change in Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-Yung (2004)*</td>
<td>Colen et al. (2000)*</td>
</tr>
<tr>
<td>Dickmann (2009)Å♦</td>
<td>Kee et al. (2006)*</td>
</tr>
<tr>
<td>Repka (2009)Å</td>
<td>Miki (2010)*</td>
</tr>
<tr>
<td>Alotaibi (2011)*</td>
<td></td>
</tr>
<tr>
<td>Wang (2012)*</td>
<td></td>
</tr>
<tr>
<td>Landa (2012)Å</td>
<td></td>
</tr>
<tr>
<td>Wu (2012) *Å</td>
<td></td>
</tr>
</tbody>
</table>

- Repka et al (2006) found better seeing eye had an increase in RNFL thickness

Δ Looking at macular thickness,
* Looking at RNFL
♦ Statistically significant for strabismic amblyopia
▪ Statistically significant for anisometropic amblyopia
✖ Looking at Ganglion Cell Count
HYPOTHESIS

- By taking an in depth look at ganglion cell count via OCT, we may be able to detect changes between the amblyopic eye and the normal eye.
METHODS

- **Inclusion Criteria**
 - >4 y.o.
 - Able to read the Snellen Linear Acuity Chart
 - Greater than 2 lines different between eyes either on current visit or documented in chart

- **Exclusion Criteria**
 - Any retinal problem
 - Any brain/orbital tumor/mass
 - Unable to cooperate perform test
METHODS

- Two OCT scans per child on the day of the visit
 - Amblyopic eye
 - Control eye

- No repeat OCTs at future visits regardless of treatment

- Ganglion cell analysis calculated by Cirrus OCT Software
 - Average GCL + IPL thickness was recorded on Microsoft Excel for both the amblyopic and control eye
DATA

- Total Patients: 15
 - Strabismic eyes: 10
 - Anisometropic eyes: 5

- Average GCL + IPL Normal eye: 79.67μm
- Average GCL + IPL Amblyopic eye: 81.33μm

- This was not statistically significant.
DATA

- What about different types of amblyopia?
- Strabismic Eyes: 10

- Average GCL + IPL Normal Strabismic eyes: 79.9μm
- Average GCL + IPL Amblyopic Strabismic eyes: 82.8μm

- Not statistically significant
What about different types of amblyopia?

- Anisometropic eyes: 5

- Average GCL + IPL Normal Anisometropic eyes: 79.2μm
- Average GCL + IPL Amblyopic Anisometropic eyes: 78.4μm

- Not statistically significant
PITFALLS

- OCT in children is a challenge in itself
- OCT was conducted by various individuals
- No minimum signal strength was required
- Small sample size
DIRECTIONS FOR THE FUTURE

- Larger sample size
- Strict OCT guidelines
- Examine various layers of the retina