Retinal Vein Occlusion

An Evidence-Based Approach
Corticosteroids, Implants, and Anti VEGF Therapies

Michael Grodin
Co-Director of Retinal Services
Director of Clinical Research
Katzen Eye Group
Baltimore, MD
Retinal Vein Occlusion

• Retinal vein occlusion is the second most common cause of visual loss due to retinal vascular disease1-3

• Two major types:
 – Branch retinal vein occlusion (BRVO)
 – Central retinal vein occlusion (CRVO)

• BRVO is the most common3
 – Five-year incidence of 0.6% (21/3558) for BRVO and 0.2% (7/3593) for CRVO3

• Persistent macular edema causes VA loss

Central Retinal Vein Occlusion

- **Pathogenesis**
 - Thrombosis of the central retinal vein
 - At or posterior to the lamina cribrosa

 - Atherosclerotic central retinal artery
 - Impinges on central retinal vein
 - Turbulent flow \rightarrow thrombus
Central Retinal Vein Occlusion

• Findings
 – Dilated and tortuous retinal veins
 – Swollen optic disc
 – Intra-retinal hemorrhages
 – Retinal edema
Central Retinal Vein Occlusion

• Risk Factors
 – Eye Disease Case-Control Study
 • Hypertension
 • Diabetes
 – Unlike BRVO
 • Glaucoma
 – Check and treat IOP!

– CRVO in young patients requires more extensive workup for cause
CRVO In Young Patients – Causes

<table>
<thead>
<tr>
<th>Causes</th>
<th>Sub-Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic vascular disease</td>
<td>• Hypertension</td>
</tr>
<tr>
<td></td>
<td>• Diabetes mellitus</td>
</tr>
<tr>
<td></td>
<td>• Cardiovascular disease</td>
</tr>
<tr>
<td>Blood dyscrasias</td>
<td>• Polycythemia vera</td>
</tr>
<tr>
<td></td>
<td>• Lymphoma</td>
</tr>
<tr>
<td></td>
<td>• Leukemia</td>
</tr>
<tr>
<td>Clotting disorders</td>
<td>• Activated protein C resistance</td>
</tr>
<tr>
<td></td>
<td>• Lupus anticoagulant</td>
</tr>
<tr>
<td></td>
<td>• Anticardiolipin antibodies</td>
</tr>
<tr>
<td></td>
<td>• Protein C</td>
</tr>
<tr>
<td></td>
<td>• Protein S</td>
</tr>
<tr>
<td></td>
<td>• Antithrombin III</td>
</tr>
<tr>
<td>Paraproteinemia and dysproteinemias</td>
<td>• Multiple myeloma</td>
</tr>
<tr>
<td></td>
<td>• Cryoglobulinemia</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>• Syphilis</td>
</tr>
<tr>
<td></td>
<td>• Sarcoidosis</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>• Systemic lupus erythematosus</td>
</tr>
<tr>
<td>Oral contraceptive use in women</td>
<td>• Closed-head trauma</td>
</tr>
<tr>
<td>Other rare associations</td>
<td>• Optic disc drusen</td>
</tr>
<tr>
<td></td>
<td>• Arteriovenous malformations of retina</td>
</tr>
</tbody>
</table>
Central Retinal Vein Occlusion

- Management
 - Iris neovascularization
 - PRP to eyes prior to NVI
 - NO benefit
 - Even if very ischemic
 - Once neovascularization detected
 - Prompt PRP
Branch Retinal Vein Occlusion

• Findings
 – Superotemporal quadrant most common
 • 63%

 – Occurs at arteriovenous crossing
 • Artery and vein bound together in a common sheath
 • Arterial thickening compresses vein
 – Turbulent flow → thrombus formation
Branch Retinal Vein Occlusion

• **Findings**
 – Within one sector of the retina
 • Superficial hemorrhages
 • Retinal edema
 • Cotton-wool spots
 • Dilated and tortuous vein
 • Corresponding artery narrowed and sheathed
Branch Retinal Vein Occlusion

• Risk factors
 – Identified by the Eye Disease Case-Control Study
 • Hypertension
 • Cardiovascular disease
 • Increased BMI at age 20
 • Glaucoma
 – Note: Diabetes not an independent risk factor
Branch Retinal Vein Occlusion

• Visual Loss
 – Acute
 • Macular hemorrhage
 • Macular edema
 • Capillary occlusion
 – Chronic
 • Macular ischemia
 • CME
 • Macular pigmentary changes
 • Epiretinal membrane formation
 • Subretinal fibrosis
Macular edema- FFA
Branch Retinal Vein Occlusion

- Neovascularization
 - BVOS defined ischemic BRVO
 - Area of non-profusion > 5 disc diameters
 - Large areas of non-profusion increase risk of neovascularization

- Apply scatter PRP to areas of retinal ischemia
 - Only when neovascular complications develop
 - NVI, NVE, NVD
Clinical Trials and Venous Occlusive Diseases

• Laser studies
 – 1980s Branch Vein Occlusion Study (BVOS)
 – 1990s Central Vein Occlusion Study (CVOS)
• 2009 Steroid studies
 – SCORE Study
 – Ozurdex Trials
• 2010 Anti-VEGF Ranibizumab studies
 – BRAVO and CRUISE
• 2012 Aflibercept
 – GENEVA
Branch Retinal Vein Occlusion

- **Branch vein occlusion study**
 - Treated eyes more likely to gain 2 lines of vision
 - Treated 65%, untreated 37%
Central Retinal Vein Occlusion

• Management
 – Macular edema
 • Central Vein Occlusion Study Group
 – Grid laser treatment in the macula
 » DOES reduce angiographic evidence of edema
 » DOES NOT improve vision
Primary Results: The Standard Care versus Corticosteroid for Retinal Vein Occlusion Study (The SCORE Study)
SCORE CRVO Conclusion

• Both triamcinolone groups were superior to the observation group for VA at 12 months
• Visual benefit as early as 4 months
• Visual benefit continued to 24 months
• The 1-mg dose has a safety profile superior to that of the 4-mg dose and similar to observation
OZURDEX™ is preloaded into a sterile, single-use, specially designed applicator to facilitate injection of implant directly into the vitreous.

- Injectable, biodegradable intravitreal implant contains 0.7 mg (700 μg) dexamethasone in the NOVADUR™ solid polymer drug delivery system (preservative-free).
- Poly (D,L-lactide-co-glycolide) PLGA biodegradable polymer matrix, which slowly degrades to lactic acid and glycolic acid as dexamethasone is gradually released.
Ozurdex Trials Conclusions

• DEX groups’ time to gain 15 letters was significantly shorter than sham eyes through day 90

• Mean change in BCVA was statistically:
 – Better for DEX groups for BRVO through day 180
 – Better for DEX groups for CRVO through day 90

• Persistence of efficacy in 21% BRVO; 17% CRVO at month 12 required only 1 Rx
Long-Term Outcomes Using Ranibizumab for Treatment of Branch Retinal Vein Occlusion
Conclusions

• On average, visual and anatomic outcomes following 6 monthly ranibizumab injections were maintained with 6 months of PRN treatment.
 – In the 0.5 mg group, further improvements in BCVA and CFT were observed at Month 7 for patients who continued to receive ranibizumab at Month 6, while improvements obtained in the first 6 months of treatment were reduced at Month 7 for patients who skipped ranibizumab at Month 6.

• With initiation of PRN treatment at Month 6, sham/0.5 mg patients had, on average
 – smaller BCVA gains from baseline at Month 12 compared with the ranibizumab treatment groups.
 – decreases in CFT at Month 7 that were maintained through Month 12.

• Ranibizumab treatment seemed to accelerate resolution of retinal hemorrhages in BRVO.

• Safety outcomes were consistent with previous Phase III ranibizumab trials.
Long-Term Outcomes Using Ranibizumab for Treatment of Central Retinal Vein Occlusion
Conclusions

• On average, visual and anatomic outcomes following 6 monthly ranibizumab injections were maintained with 6 months of PRN treatment.
 – In the 0.5 mg group, further improvements in BCVA and CFT were observed at Month 7 for patients who continued to receive ranibizumab at Month 6, while improvements obtained in the first 6 months of treatment were reduced at Month 7 for patients who skipped ranibizumab at Month 6.

• With initiation of PRN treatment at Month 6, sham/0.5 mg patients had, on average
 – smaller BCVA gains from baseline at Month 12 compared with the ranibizumab treatment groups.
 – decreases in CFT at Month 7 that were maintained through Month 12.

• Ranibizumab treatment seemed to accelerate resolution of retinal hemorrhages in BRVO.

• Safety outcomes were consistent with previous Phase III ranibizumab trials.
Intravitreal Aflibercept Injection for Macular Edema Following Central Retinal Vein Occlusion