Collagen Crosslinking and Management of Keratoconus

Christopher Chow, M.D.
Michigan Cornea Consultants
Oakland University William Beaumont School of Medicine
May 11, 2012
Keratoconus

- First described in 1854
- Noninflammatory, nonvascularized progressive corneal thinning and protrusion
- Hallmark: high progressive irregular astigmatism
- No strictly defined criteria
- A clinical diagnosis
Keratoconus

- Prevalence and distribution
 - 1 per 1000-2000
 - Preponderance in women – up to 67%
 - Occurs in all races
 - 6-8% with family history
Keratoconus

- **Course**
 - Usually bilateral
 - 14.3% unilateral? – Amsler, 1961
 - Probably less – Rabinowitz, 1993
 - Onset often during puberty
 - Progression over 10 to 20 years
 - Longer?

- **Systemic Associations**
 - Atopy
 - Down Syndrome
 - Noninflammatory connective tissue disorders
Keratoconus – How Have We Treated It?

- **Mild keratoconus**: Treated with glasses/soft contact lenses to correct refractive error and astigmatism.

- **Moderate keratoconus**: Treated with RGP contact lenses, which support bulging cornea and correct refractive error/irregular astigmatism.

- **Advanced keratoconus**: Penetrating keratoplasty.
Current Treatment Options

- **Contact Lenses**
 - Gas permeable contacts are still the standard means of vision correction for keratoconus patients
 - **Pros**
 - Safe
 - No significant lifelong trauma risk
 - No rejection risk
 - Newer contact lens options – SynergEyes, KeraSoft
 - **Cons**
 - Fitting
 - Comfort – 27-37% keratoconus patients develop contact lens intolerance
 - Risk of infection
 - Contact lenses potentially exacerbate cornea thinning – contact lens-induced keratoconus
Current Treatment Options

- Collaborative Longitudinal Evaluation of Keratoconus Study (CLEK)
 - 1065 patients followed for 8 years – began in 1995
 - Conclusion – Risk factors for requiring penetrating keratoplasty:
 Gordon MO et al, AJO, 142:923, 2006
 - Younger age
 - Steeper keratometric values
 - Worse visual acuity
 - Corneal scarring
 - Contact lens discomfort
 - Poorer visual function-related quality of life
Keratoconus

- Penetrating keratoplasty
 - 4500-5000/yr penetrating keratoplasties for keratoconus
 - Up to 21% of keratoconus eyes
 - Up to 96% success rate
 - Phakic patients
Penetrating Keratoplasty for Keratoconus

Issues

- Slow visual rehabilitation (12-18 mos.)
- Refractive/astigmatism issues
- Suture related problems
- Infectious keratitis
- Graft rejection – 15-20%
- Transplanted corneas may develop keratoconus in 10 to 20 years, although rare
- Corneal grafts have a limited life expectancy possibly related to an accelerated rate of endothelial cell loss over time (3X normal)
- Particularly problematic for younger patients as they may require multiple transplants during their life time
Lamellar Keratoplasty

- Advantages compared to penetrating keratoplasty
 - Lower chance of graft rejection
 - Extraocular procedure
 - Less stringent requirements for quality of donor tissue
 - Less use of topical steroids
 - Better wound strength
 - Faster healing

- Disadvantages compared to penetrating keratoplasty
 - Technically more difficult and time consuming
 - Steep learning curve
 - Visual outcome usually not as good
 - Irregular/uneven dissection of donor tissue
 - Irregular/uneven dissection of host bed
 - Interface scarring
 - Interface debris
 - Stromal folds
Deep Lamellar Keratoplasty

- “Classical” technique
 - Removal of tissue layer by layer until deep stroma or Descemet’s membrane is reached

- “Big bubble” technique
 - Introduced by Anwar and Teichman in 2002
 - Injection of air into the supra-Descemet’s space to detach the membrane.
Lamellar Keratoplasty – Big Bubble Technique

Deep Anterior Lamellar Keratoplasty

- Complications
 - Descemet’s membrane perforation – 9-30%
 - If conversion to penetrating keratoplasty is necessary a second, healthier donor cornea may be needed
 - Pseudo-anterior chamber
 - Descemet’s folds/interface opacification
 - Stromal graft rejection – 1.4-3.1%
INTACS

- Arc-like PMMA segments inserted into the deep corneal stroma to flatten the central cornea
- Originally designed and approved by the FDA in 1999 to treat mild myopia (-1.00 to -3.00 D)
- Colin 2001 – first published use of INTACS for keratoconus patients
- 2004 - approved by FDA under humanitarian device exemption for use in contact lens-intolerant keratoconus patients
How Do INTACS Work?

Arc-shortening model
INTACS

Table 1. Change in Visual Acuity—All Eyes

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved ≥ 2 Lines</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>No change</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>Worsened ≥ 2 Lines</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>74</td>
<td>100</td>
</tr>
</tbody>
</table>
“Doctor, isn’t there anything you can do to keep my keratoconus from getting worse??”
Crosslinking

- Crosslinking – hardens and stabilizes materials
 - Tanning leather
 - Egyptian mummies
 - Garden hose
 - Automobile lacquers
Crosslinking

- Crosslinking – hardens and stabilizes materials
 - Dentistry – UVA crosslinking to harden filling materials
 - Pathology – formaldehyde to preserve tissue specimens
 - Heart valves – glutaraldehyde crosslinking to enhance durability, resistance to enzymatic degradation and reduce immunogenicity
 - Dermatology – tighten collagen in sagging skin
 - Aging – arterial hardening, stiffening of joints, wrinkling of skin
 - Cataract – UV crosslinking of lens crystallins
Corneal Crosslinking

- Crosslinking the Cornea
 - Natural crosslinking of aging cornea through glycation
 - Diabetics – lower incidence of keratoconus due to natural crosslinking from high glucose and UV light
 - Concept proposed by Theo Seiler in 1996 at ARVO
 - Clinically reported by Wollensak in 2003
 - UVA at 370 nm used to excite photosensitizer riboflavin to generate reactive oxygen species which reacts further with other molecules to induce covalent bonds between collagen fibrils
 - Approved in all 26 European Union nations by 2006
Corneal Collagen Crosslinking
Corneal Collagen Crosslinking

Creates chemical bonds between fibers
Collagen Crosslinking

- Laboratory studies
 - Increased corneal rigidity of 329% - Wollensak et al, AJO, 135: 620, 2003
 - Crosslinking effect present for depth of 300 μm
 - Rabbit anterior stroma – collagen fiber diameter increased by 12%
 - Rabbits – keratocyte apoptosis up to 300 μm
Collagen Crosslinking

- Dual role of riboflavin
 - Absorption of UVA
 - Wollensak G, et al, 2003. Riboflavin increases absorption of UVA by the cornea to 95% compared to 32% without
 - Photosensitizer
 - Production of oxygen free radicals to induce cross-linking of collagen fibers
 - No cytotoxic effect on keratocytes
Collagen Crosslinking

- **Technique**
 - Topical anesthesia
 - Debridement of central 8-9 mm epithelium
 - 0.1% riboflavin in 20% dextran applied every 2-5 minutes for 30 minutes
 - Slit lamp evaluation to assess penetration of riboflavin
 - Pachymetry
 - Irradiation with UVA 370 nm for 30 minutes. Continued application of riboflavin every 2-5 minutes
Collagen Crosslinking

- Wollensak G et al. AJO, 135:620, 2003
 - 23 eyes with moderate or advanced progressive keratoconus treated and followed for 3 years
 - Progression of keratoconus stopped in all eyes
 - 16 eyes – flattening by 2 diopters
 - 15 eyes – improved BCVA

 - 60 eyes
 - Keratoconus progression stopped in all
 - Flattening by up to 2.87D
 - BCVA improved by a mean 1.4 lines
Collagen Crosslinking

Collagen Crosslinking

 - French National Reference Centre for Keratoconus
 - 142 eyes with progressive keratoconus
 - Halted keratoconus progression or improved max keratometry value in 89.9% at 12 months
 - CDVA stabilized or improved in 87.6% at 12 months
 - 3.5% with 2 or more lines of vision lost
Collagen Crosslinking

 - 241 eyes, 7 year results
 - Decrease in maximum keratometry
 - 2.7D at 1 year
 - 2.2D at 2 years
 - 4.8D at 3 years
 - Visual acuity improved 1 line per year for 3 years in 57%
 - No lines of lost BCVA
 - 2 patients with progression of keratoconus – repeat CXL
 - Such confidence in procedure – no control group
Collagen Crosslinking

- Siena Eye Cross Study – Caporossi A et al, AJO, 149: 585, 2010
 - 44 pts with keratoconus and documented progression had one eye treated.

<table>
<thead>
<tr>
<th></th>
<th>1 yr</th>
<th>2 yrs</th>
<th>3 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated eyes: Keratometry</td>
<td>-1.96 D</td>
<td>-2.12 D</td>
<td>-2.24 D</td>
</tr>
<tr>
<td>Untreated eyes: Keratometry</td>
<td>+1.2 D</td>
<td>+2.2 D</td>
<td></td>
</tr>
<tr>
<td>Effective change with treatment:</td>
<td>-3.16 D</td>
<td>-4.32 D</td>
<td></td>
</tr>
</tbody>
</table>
Collagen Crosslinking

- Subjective outcomes
 - Brooks NO et al., JCRS, 38:615, 2012
 - 107 eyes treated in 76 patients
 - 71 eyes with keratoconus, 36 eyes with post-LASIK ectasia
Managing Expectations with CXL

- MUST set proper expectations with patients
- 98%: Stop progression of Keratoconus
- 60-80%: Improved/Reduction in Corneal steepness
- 60-80%: Improvement in BCVA
 - 1-2 lines
 - NOT a refractive procedure – will likely still need glasses or contact lenses

Who Should Get Crosslinking?

- Young keratoconus patients
- Keratoconus patients older than 35 – only if progressing
- Progressive ectasia
- Pellucid marginal degeneration
- Post-RK visual fluctuation
What Are the Risks and Complications of CXL?

- Treatment Failure
- Loss of best-corrected visual acuity
- Corneal edema
- Stromal Haze/Scarring
- Postoperative infection
- Increased IOP
- Carcinoma?
Risks and Complications of CXL

- Treatment failure
 - Defined as progression of keratoconus
 - Perhaps about 7-8%
 - Possible risk factors
 - Age >35
 - Spectacle correction better than 20/25
 - Max keratometry >58.00D
Risks and Complications of CXL

- Loss of BCVA
 - Transient loss is common
 - Permanent loss of 2 or more lines of Snellen acuity is considered a complication in assessing refractive procedures.
 - 5% considered acceptable?
 - Koller T et al, JCRS, 35:1358, 2009
 - 3 out of 105 patients = 2.9%
 - Remember – this is not an elective refractive procedure
 - Risk factors: age > 35, CDVA of 20/25 or better
 - Other studies – less
Risks and Complications of CXL

- Corneal edema
 - Spoerl E, et al, Cornea, 26:385, 2007
 - Corneal endothelial risk and edema in cornea with thickness <400 microns
Collagen Crosslinking

- Use of hypo-osmolar riboflavin for thin corneas
 - Raiskup F and Sproel E, AJO, 152:28, 2011
 - 32 eyes of 29 patients with progressive keratoconus and stromal thickness of less than 400 microns
 - Treated with hypo-osmolar riboflavin every 2 min for 30 minutes before CXL
 - At 1 year – no progression of keratoconus, no scarring
Risks and Complications of CXL

- Stromal haze
 - 14/163 (9%) patients with visually significant stromal haze
 - 5/44 (11%) patients with visually significant stromal haze
 - Extends 60% into stroma
 - Greatest at 1 month, often will resolve over time (12 months)
 - Koller T et al, JCRS, 35:1358, 2009
 - Grade of haze decreases from 0.78 to 0.006
 - Worse with thinner corneas and higher keratometry readings
 - DLK reported when treating post-LASIK ectasia
Risks and Complications of CXL

- Postoperative Infection
 - Reports of bacterial keratitis - pseudomonas, E. coli
 - Reactivated herpes simplex keratitis
 - Acanthamoeba keratitis
 - Some apparently related to contaminated riboflavin
Risks and Complications of CXL

- Increased Intraocular Pressure
 - Several studies have shown increased IOP of about 2mm Hg
 - Uncertain accuracy of IOP readings due to change in corneal rigidity
Risks and Complications of CXL

- Carcinoma
 - Ultraviolet light as risk factor
 - Total UV dose per treatment = 5.4 joules/cm² in Dresden protocol
 - About the same as 30 minutes on a sunny summer day at the beach
 - Some studies using higher irradiance
What to do with the Epithelium?

- Epithelium off vs. epithelium on
 - Epi on would be simpler
 - Epi on would have fewer risks – infections, ulcers, scarring, infiltrates
 - Epi on would have less pain and faster visual recovery
 - Days vs. weeks/months
 - How to get riboflavin to penetrate?
 - Can take much longer
 - Disrupt epithelium – preservatives (BAK), topical anesthetics, 20% alcohol, scratching/epithelial disruptors
 - Different riboflavin preparations
 - Overall – epi-on may be about 20% less effective than epi-off
Collagen Crosslinking

- Variations
 - Dresden protocol
 - Athens protocol
 - CXL + topography-guided PRK
 - CXL + INTACS
 - Riboflavin into INTACS channel
 - Pulsing of UV light
 - Allows replenishing of oxygen reserves
 - Keraflex (Avedro Inc.) microwave pulse + CXL
 - Microwave pulse raises temperature to 149F, shrinking and flattening the anterior 150 microns of central cornea
 - TRXL (Seros Medical) continuous wave infrared laser + CXL
 - Shrinks anterior stroma
 - CXL + phakic IOLs
Collagen Crosslinking

- Other applications for Crosslinking
 - Role in treating infections?
 - UV light alone kills bacteria, fungi, viruses and protozoa
 - UV light and riboflavin interaction forms cytotoxic free oxygen radicals
 - Enhancement of corneal resistance to enzymatic degradation
 - Makdoumi K et al, Cornea, 2011 – 7 eyes treated
 - Corneal edema
 - Corneal melt
 - “LASIK extra”
 - Incidence of ectasia after LASIK = 1 in 10,000?
 - Riboflavin to stromal bed, replace flap, 10 min UV
 - Results in interweaving of stroma to flap
Questions and Future Directions

- Epi-on vs Epi-off and establishment of protocol variations
- LED lamp technology
- Titration of treatment – increase of irradiance with decrease in treatment time
- Establish how much stiffening is needed. 2x? 4x? 8x?
- Alternative crosslinking agents
 - Glycolaldehyde
 - Beta-nitro alcohols
 - Flash linking – hydrogel substrate polyvinyl pyrrolidone
 - Riboflavin with alternate preparations
- Premature aging of cornea – other sequelae?
 - Keratocyte and dendritic cell risks
 - Tear function
 - Stem cell effects
- Standard of Care
Thank you!